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We present a mathematical framework for describing the allowable forms of perturbations of
a control parameter for the purpose of controlling chaos. The present paper extends the method
initially proposed by Ott, Grebogi, and Yorke [Phys. Rev. Lett. 64, 1196 (1990)] and later extended
by Romeiras et al. [Physica D 58, 165 (1992)], allowing for a more general choice of feedback forms.
Among the allowable feedback forms, those that do not include the coordinates of the desired control
object explicitly provide a natural way to go about tracking, especially when the parameter changes
are involuntary. Another benefit of the method is that the control can be implemented by the use of
earlier states of the system as the feedback information. The generalized method can be conveniently
used to deal with an experimental system in the absence of an a prior:i mathematical system model
where the delay coordinates are used. These are illustrated by numerical examples in the paper.

PACS number(s): 05.45.+b

I. INTRODUCTION

Ott, Grebogi, and Yorke (OGY) [1] proposed that
an unstable periodic orbit can be stabilized by making
some small time-dependent perturbations on one of the
adjustable parameters. This method was extended by
Romeiras et al. [2]. For a discrete time system

Ziy1 = f(zi’ Q), (1)

where z; € R” includes n coordinate components, q €
R™ includes m parameter components, and f is suffi-
ciently smooth in both z and q. To stabilize a fixed point
z, of (1), the perturbations on an adjustable parameter
P (p € q) around a value py vary as

DPi+1 = Po + £(Zit1 — Z4), (2)

where p is a component of q, € is an n-dimensional vec-
tor to be determined. The solution to the problem of the
determination of &, such that the eigenvalues of the fixed
point have specified values, is well known from control
systems theory and is called the “pole placement tech-
nique” (see, for example, Romeiras et al. [2]). Obviously,
two basic elements are needed to implement the control,
i.e., a previously obtained fixed point z, about which the
control is achieved and the coordinates of the current
state used as prompt feedback information. Thus two
questions resulting from the algorithm can be asked. (a)
Since the fixed point is generally a function of the param-
eters, i.e., z. = z.(q), how can one control the system
whose one (or more) parameter(s) change(s) with time?
(b) In the case that prompt feedback is inaccessible (e.g.,
in the case where the time spent on the feedback circuit
cannot be neglected), how can one implement the control
by using the earlier states as feedback information?
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The goal of controlling chaos when the system param-
eters change with time is to track the desired unstable
periodic orbits. The changes of system parameters can
be divided into two situations, i.e., the changes can be
controlled externally as wanted and the changes are in-
voluntary or cannot be controlled externally (systems in
such a case are called time-dependent systems in this pa-
per). In the first situation, Gills et al. and Carroll et
al. [3] reported a way of tracking a fixed point in the pa-
rameter space. Assuming the location of the fixed point
is obtained at an initial parameter value, their tracking
procedure can be expressed as follows: estimate the lo-
cation of the fixed point at a small changed parameter,
substitute the estimated value into OGY’s control for-
mula, and iterate the perturbed map several times (say,
100), then measure the mean of the fluctuation of the
perturbed parameter p around po. Repeating the two
steps again and again, one can find a value which min-
imizes the mean of the fluctuation and treat this value
as the true value of the fixed point at the new parame-
ter. Obviously, their tracking procedure is not applicable
to the second situation because the parameters cannot
stop at certain values to wait for the fixed point to be
predicted. However, time-dependent systems are very
general in practice, so finding a way to control this kind
of system is an important problem.

Question (b) is also of practical importance since in
some cases prompt feedback is not accessible (e.g., in the
case that the time spent on the feedback circuit cannot
be neglected). We are not aware of work making an effort
in this direction.

Let the perturbations take the general form

pi+1 = 9(2i, pi), (3)
where g(z,p) is sufficiently smooth in the neighborhood
of the desired orbit and is called the control function in
the following. Since (3) generally is not a simple feedback
of the prompt state as is (2), the “pole placement tech-
nique” is generally not applicable. This paper provides
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a mathematical framework to deal with general forms of
perturbation and therefore to solve the problems men-
tioned above. The key idea is that the activated parame-
ter should be considered as an independent variable and
thus the stability of a periodic orbit of the perturbed sys-
tem ought to be discussed in the coordinate-parameter
space.

The plan of the paper is as follows. In Sec. II, we give
a mathematical framework for describing the allowable
control functions, which is put forward first in the case
that the equations of the system are known and then ex-
tended to deal with experimental systems in the absence
of an a priori mathematical system model.

In Sec. III, several numerical examples are provided in
order to illustrate the effectiveness of the method. Some
are to illustrate the application of tracking the desired
fixed point in the case that the changes of the system
parameters can be adjusted externally and in the case
that the system is time dependent. Special attention is
focused on time-dependent systems, especially on time-
dependent experimental systems in the absence of an a
priori mathematical system model, in this part of the
section. The other examples show how to control chaos
by using earlier states as feedback information.

Several control functions used in the paper for different
purposes are listed in the following. Their applicability
will be understood after the general discussion in Sec. II.
To fulfill the purpose of tracking an unstable fixed point,
the control function can be chosen as

Pi+1 = po + €(Zi+1 — 2i) + Ent1(Pi — Po) (4)
in the case where the equations of the system are known
and as
Pi+1 = Po + €(Zi+1 — %) + €nt1(Pi — Po)

+ens2(Pic1 —Po) + - + Engri1(Pir — Do) (5)

in the absence of an a priori mathematical system model,
where p;_, is the previous rth value of p;. The control
functions above provide a natural way to go about track-
ing, especially when the parameter changes are involun-
tary because they do not include z, explicitly.

In order to control chaos by making use of earlier states
as feedback information, we chose

Pit+1 = Po + €(Zimt — Zx) + Ent1(Pimt — Po) (6)

as the control function, where z;_; and p;_; are the pre-
vious (I + 1)th state and parameter, respectively (notice
that the present time is 7 + 1).

Finally, in Sec. IV we present the main conclusion and
some discussions.

II. DESCRIPTION OF THE METHOD

A. The case of a known mathematical system model

For the sake of simplicity we also consider the dis-
crete time dynamical system (1) and we shall describe
the method through the application to the stabilization
of a fixed point z, (i.e., period 1 orbit) of the map f. The
consideration of periodic orbits of period larger than 1 is
straightforward and is briefly discussed in Sec. IV. Let

us assume the perturbations are added to the system by
perturbing a parameter p (p € q) around a value py. Gen-
erally, p and the coordinates will couple to each other, so
p should also be taken as a variable. The exact analysis of
the dynamical behavior of the perturbed system should
be made in the coordinate-parameter space. The dynam-
ics of the perturbed system generally is determined by
an (n + 1)-dimensional map in the coordinate-parameter
space:
z;v1 = £(zi,p:) ,
(7
Pi+1 = 9(%i, p;)-

We limit the form of g to ensure (z.,po) be the fixed
point of this (n + 1)-dimensional system. The linear ap-
proximation of the system in the neighborhood of (z., po)
is

r of of
8Zit1 oz op | [ 0% ©
0pit1 L %}, 1\ opi

The stability of the fixed point (z.,po) is determined by
the (n + 1) X (n + 1) matrix

- .8_1‘ Q_t: -
9z 8p
T = . (9)
99 g

L. 8z Op J

When one speaks of stabilizing an unstable fixed point
z, of the original system, one actually means to make
the fixed point (z.,po) of the perturbed system stable.
The point (z.,po) will be an asymptotically stable fixed
point of the perturbed system if the following two condi-
tions are satisfied: (a) g(z«,po) = po, which guarantees
(2, po) be the fixed point of the (n + 1)-dimensional per-
turbed system; (b) all the eigenvalues have modulus less
than unity. The two conditions can be used as criteria
by which one can examine if a given control function is
allowable or not.

Now we present a general algorithm for obtaining the
allowable control functions. The first step is to determine
the appropriate elements of the last row of the matrix (9)
according to m + 1 desired eigenvalues since the pertur-
bations only influence this row of the matrix. Assuming

IT| = (=1)"**co,

n+1

DO IT| = (=1)" ey,
-1

n n+1

SN 1Tyl = (—1)" e,

i=1 j=i+1

n n+1

DD D> Tl = (1) e,

i=1 j=i+1 k=j+1

n+1

3ot = (-1 e,
=1
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where |T| is the determinant of the matrix T; |T;| is
the determinant obtained by eliminating the ith row and
the ith column of the matrix T; similarly, |T;;| is the
determinant obtained by eliminating the ith and the jth
rows and the ith and jth columns of the matrix T, and so
on. Y t;; is just the trace of the matrix T with elements
t;;. In fact, ¢; ( =0,1,...,n) are the coefficients of the
eigenequation

AP 4 A" e A" iAo =0 (11)

Let A1, A2,..., An, Ant1 be n+1 given eigenvalues of (9);
then the relationship of the coefficients and the eigenval-
ues results in

n+1
Cpn = (—-1)1 Z Ai,
z=:z+1 n+1
L D IDIRE
t=1 j,j>1
n+l n+l ntl (12)

Cn_2 = (—1)32 Z Z A Ak,

i=1 j,j>i k,k>j

co = (=1)""1 A1z Apga,

respectively. Equation (10) includes n+1 linear equations
which contain n+1 elements [i.e., the elements of the last
row of (9)] to be determined; thus the solution generally
exists.

The second step is to find allowable control functions
according to the n+1 determined elements. Noticing that
the n+1 elements in fact are components of (%f, gg), the
control function g generally should include at least n + 1
coefficients to be determined. However, the choice of an
allowable form of g may still be various. This feature
provides us with wide freedom to choose different control
functions for different purposes. The perturbation form
(2) is one of the allowable control functions though it has
only n coefficients to be determined. In fact, the control
function is a simple feedback of the linear combination of
the current coordinates. Hence the rank of T is reduced
to n, which causes the first equation of (10) to be trivially
0, and thus one of the n + 1 eigenvalues to be always 0.
Then the n-dimensional vector € can be calculated by the
remaining n equations of (10).

B. In the absence of a mathematical system model

In experimental studies of chaotic dynamical systems,
delay coordinates are often used to represent the sys-
tem states [4,5]. This is sometimes useful because it
only requires measurements of the time series of a sin-
gle scalar state variable which we denote £(t). To ob-
tain a map, one can take a Poincaré surface of section
and obtain the discrete time series & (¢ = 1,2,3,...)
of the variable £(t). Using time delay coordinates
with time delay 7 and embedding dimension n, an n-

dimensional coordinate vector is formed as follows: z; =
(Enis€ENi—rsENi—27y- -1 ENi—(n—1)r). Here, N is an in-
teger. If N > (n — 1)7, then the set of the compo-
nents of z; and the set of the components of z;,; have
no intersection. For example, let n = 3 and 7 = 1.
If we choose N = 3, then z; = (£3i,£3i-1,&3:i—2) and
Zi+1 = (&€3i+3,&3i+2,€3:+1) have no common compo-
nents. Dressler and Nitsche [6] proved that in this case
z;+1 depends not only on p; but also on p;_;. Other-
wise, if N < (n — 1)7, then the set of the components
of z; and the set of the components of z;,; will have
some common components. For example, let n = 3,
7 = 1, and choose N = 1; then z; = (&,&—-1,&—2) and
Zz;+1 = (&+1,&,&—1) have two common components &;
and &;_;. It can be proved that in this case z;,; depends
on p;, pi—1, Pi—2, and p;_3. In fact, when N < (n — 1),
z;+1 generally depends not only on p; but also on some
(say, r) earlier parameter values, i.e., the reconstructed
system can be written as

Z;4+1 = f(zi,Pi,Pi—l, ) ’pi—'r)- (13)
Noticing that (z;,pi,pi—1,-..,Pi—r) of time ¢ is mapped
to (Zit1,Pit1,Piy- -+, Pi—r+1) Of time ¢ + 1, the dynamics
of the perturbed system should be discussed in an (n +
r + 1)-dimensional coordinate-parameter space. Let the
perturbation at time ¢ + 1 have the general form

s Pi—r)- (14)

Noticing that p;,p;—1,... and p;—, remain fixed in the
process from time ¢ to time ¢ + 1, the perturbed map
should be

Dit1 = g(zi,Pi,Pi—uPi—z, cee

Ziy1 = f(ziypiapi—l’pi—Z, ---,pi—r)a
Di—r+1 = Pi—r+1;

Pi—1 = Pi—1, (15)
Pi = Pi,
Dit1 = g(zi,Pi,Pi~1,Pi—z, ---7pi—1-)~

Let the fixed point of the original system be z,;
then the fixed point of the perturbed map must be
(Zx, D0, Po,---,P0). Since the (n + 7+ 1) X (n+r + 1)
linearized Jacobian matrix of (15) must have at least
n + r + 1 adjustable components to satisfy n +r + 1
desired eigenvalues, the control function should include
at least n + r + 1 control coefficients to be determined.
The Jacobian matrix of the perturbed system is

rof of _of .. _Of A
8z Op; Opi-1 8pi—r
0 0 0 cee 1
T=|: i o (16)
0 1 0 0
8g 8 8g ag
L 8z Op; Opi-a 8pi—r |
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The elements except those in the last row of this Jaco-
bian matrix are experimentally accessible. Therefore the
method is applicable to experimental systems.

III. APPLICATIONS

A. For systems where some parameters
change with time

1. The case of a known mathematical model

To fulfill our purpose, the control function can be cho-
sen as (4). Obviously, the control function is not a sim-
ple prompt feedback. An important difference from (2)
is that (4) does not include the fixed point to be stabi-
lized explicitly. For n + 1 desired eigenvalues, the n + 1
coefficients (e1,€2,...,€n+41) included in (3) can be de-
termined by the method of Sec. II at a given q. The
coefficients can be considered as a point in the (n + 1)-
dimensional coefficient space. For the consideration of
continuity, there must exist a region in which any point
ensures that the eigenvalues of the fixed point of the per-
turbed system have modulus smaller than unity and we
call this region the control region in the following. Any
point in the control region is suitable to implement the
control. Most of the numerical examples in this paper
are done by using a point in the control region which
lets all the eigenvalues of the matrix (9) be 0, and, for
convenience, we call this point the “center” point of the
control region in the following. One can calculate the
“center” point by simply setting co =c¢; =+ =¢, =0
in Eq. (10). The control region is determined by the fixed
point z, and thus related to q. A given q determines a
control region; then two values q and q + § determine
two control regions. If the difference § is small enough,
the two control regions will have an intersecting part.
Any point in the intersecting part can be used to stabi-
lize not only z,.(q) but also z.(q + ). The evolution of
the perturbed dynamical system can terminate at either
of the two fixed points, which only depend on what the
current values of the parameters are. This is possible be-
cause the control function given by (4) does not include
the desired fixed point explicitly. In other words, though
the “center” point calculated at q is not the “center”
point at q + &, it will be within the intersecting part of
the control region of q and the control region of q + 4.
Thus it is still suitable for the stabilization of the desired
fixed point at the changed parameter q + 8. Actually,
the “center” point determined at q. can be used to sta-
bilize the fixed point within a certain parameter region
around q. (which is called the stabilizable region of the
center point of q.). Hence, once a desired fixed point
is obtained at q. by any method, one can calculate the
“center” point and apply it to stabilize the fixed point
over a region around q,. If the system is time indepen-
dent, i.e., the parameter q does not depend on the time,
the control function (4) certainly can make the perturbed
system terminate at the fixed point (z.,po) when the ad-
justable parameter p is perturbed around the value po. If

the parameters of the system can be externally adjusted
along a trajectory in the parameter space, one can track
the fixed point along the trajectory by (4). The track-
ing procedure is described as follows. First calculate the
“center” point £(q;) at q if z.(qi1) is obtained by any
method, then adjust q to the next value q,, and iterate
the perturbed map several times by use of £(q;) to make
the perturbed system terminate at z.(qz). The proce-
dure can be repeated until q is close to the edge of the
stabilizable region of £(q1). Then one can recalculate the
“center” point according to the located fixed point z.(q)
and continue the tracking procedure. One need not know
the edge of the stabilizable region of £(q) though it can
be calculated analytically. The time to recalculate the
“center” point can be determined according to the fol-
lowing fact: the time spent for terminating at the fixed
point will be heavily increased when q is close to the edge.
Thus the recalculation of the “center” point can be done
by computer according to the desired terminating rate.
Let us take the logistic map z;4; = ¢ — az? as an
example to illustrate the algorithm. Assuming a and c
are two parameters, let us perturb a around a value ag
as
Git1 = o + €1(Tip1 — ) + €2(a; — ao). 17)
We get a two-dimensional perturbed map: z;41 = ¢ —
ai:lf? and a;4+1 = ap + 61($i+1 —_ $1) + Eg(ai — ao). The
original system has two fixed points defined by z4 =
—L 4 ¥itdac ,pq 5 = L _ Vitdac  pgqyme Ty

. 2a 2a . 2a a
is the fixed point to be tracked along the parameter c.

Fixing a = 1.6, Fig. 1 shows the control region at ¢ =
1 (solid-line-enclosed region) and the control region at
¢ = 1.2 (broken-line-enclosed region) in the e;-e2 plane.
The point C and the point C’ are the “center” points

€2

-10 -8 -6 -4 -2 0

FIG. 1. The control regions around the “center” point at
¢ = 1.0 (the solid-line-enclosed region) and at ¢ = 1.2 (the
broken-line-enclosed region), respectively. Point C and point
C’ are the corresponding “center” points.
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for the parameter ¢ = 1 and ¢ = 1.2, respectively. One
can see that these two regions intersect with each other,
which means the fixed point can be stabilized by use
of any point belonging to the intersecting part at least
over the parameter range ¢ € (1.0,1.2). In fact, a direct
calculation shows that the stabilizable range of the point
C is (—0.16,2.05). Figure 2(a) shows that the fixed point
is tracked just over the stabilizable range by use of the
point C. In this tracking procedure, we add (subtract)
0.01 to (from) c at every change and then iterate the
perturbed map five times to wait for the evolution of the
system to terminate at the fixed point. In fact, when
adding (subtracting) ¢ on a scale larger (smaller) than
0.01 at every change, one gets the same result. This
means that the range in which the fixed point can be
tracked is just the range in which it can be stabilized. As

-0.5 —

0 250 500
i

FIG. 2. (a) The bifurcation diagram of the logistic map
Zi41 = ¢ — azx? along the parameter c. The tracking result by
using the “center” point C is also illustrated in the figure. (b)
The result of tracking the fixed point 4 when the underlying
change of c is ¢(i) = 1+4dsin(B¢) by using the “center” point C
when § = 1.15 and 8 = 0.05. The trajectory of the perturbed
system is denoted by the discrete points (the initial value is
set at £, when ¢ =1 and a = 1.6). The solid line is z4(c).

a contrast, we also provide the bifurcation diagram of ¢
in Fig. 2(a). One can see that the parameter range in
which the fixed point can be tracked by a single “center”
point is rather wide.

More important, one can expect that the fixed points of
time-dependent systems can also be tracked by use of the
control function (4), as long as the change is slow enough.
This is possible for the same reason that the perturbation
form does not include the fixed point explicitly.

Let us still take the logistic map as an example, but
this time we assume that c is time dependent intrinsically
or cannot be adjusted externally. Assume the underlying
change of c is c(i) = 1 + dsin(/B8¢), where c(i) denotes the
value of ¢ at time i, B determines the changing scale of
¢, and § determines the changing range of ¢ around 1.
Fixing a = 1.6, Fig. 2(b) shows the results obtained by
using the “center” point determined at ¢ = 1 to track the
fixed point of the system. In this figure, 8 = 0.05 and § =
1.15. One can see that the trajectory of the controlled
system is very close to the desired object. Numerical
results show that the point C is still effective even if
B = 0.1 though the deviation from the desired object
becomes more distinct.

2. In the absence of an a priori mathematical model

Now we illustrate how to implement the control for
experimental systems in the absence of an a prior: math-
ematical system model. The control function can be cho-
sen as (5) for this purpose. Let us assume that the un-
derlying system model is the Hénon map [7]

zit1 = 1 — az? + by;,

Yit1 = Ty, (18)

where z; can be measured as a time series, the parameter
a is the parameter to be perturbed, and b is the other
parameter. This system has two fixed points defined by

b—1 V(b—1)2 4+ 4a
TE=Ye =t : 2a)
and
b—1 JB—17+4a
z_:y__: —_— .

2a 2a

We assume that (z,y) is the desired control object.

In this example, if we choose n = 2,7 =1,and N =1,
then z; = (x;,x;—1) and 2;47 = (Zi41,z;) will have a
common component ;. As we mentioned in Sec. II, the
situation makes z;,; depend not only on a;,a;_; but also
on a;_s, and thus the perturbed system should be dis-
cussed in a five-dimensional coordinate-parameter space.
The perturbations of a around the value ao should take
the form

a;i+1 = ag + €1(xip1 — l‘z) +e2(x; —xi—1) + e3(a; — ao)
+ea(ai—1 — ag) + es5(ai—2 — ao)- (19)

If we choose n = 2,7 = 1, and N = 2, then z; =
(z2i, 2i—1) and z;41 = (T2i42,T2i+1) Will have no com-
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mon component. So z;,; depends only on a; and a;_;
and the perturbed system is four dimensional. The cor-
responding control function is

air1 = ag + €1(@ait2 — T2;) + €2(T2i41 — T2i—1)

+es(a; — ag) + €4(ai—1 — ao). (20)

Similarly, if we choose n = 2,7 = 2, and N = 3, then z; =
(3i,T3i—1) and 2z;41 = (Z3i43,T3;42) have no common
component and the control function is

air1 = ao + €1(T3i43 — T3:i) + €2(T3i42 — T3i-1)

+63(a,~ - 0,0) + 54(0,,'__1 — ao). (21)

Effective control coefficients must exist for each of the
three choices according to the discussion of Sec. II. How-

ever, the control ability of the first case is the best be--

cause the control is added to the system at every time
of measuring z;. The inconvenience in this case is that
there are five control coefficients to be determined, which
will result in some difficulty when some parameters are
time dependent intrinsically. In the second and third
cases, there are only four coefficients to be determined,
but the control ability is not as good as in the first case
because the perturbation is added every two and three
times of measuring z; and thus the perturbed system is
more sensitive to noise. Although we chose n = 2 in
the three cases (which is just the same as the dimension
of the underlying system), we point out that control is
still achievable in the case n > 2 though one needs to
determine more control coefficients.

Now let us discuss the determination of the control
coefficients of the control function in the following three
cases.

(a) If the system parameters are time independent, the
matrix (16) can be obtained experimentally by the well-
known embedding technique and the control coefficients
can be obtained as discussed in Sec. II. In this case, one
can track the fixed point along an externally adjustable
parameter by use of the above perturbation forms.

(b) If the original system is time dependent but the
time-dependent parameter (say, b) can be frozen under
some conditions (for example, a parameter which is de-
pendent on temperature can be “frozen” at constant tem-
perature), the control coefficients can be obtained for the
frozen parameter as in the case (a). And, as shown in
the last subsection, the control coefficients obtained for
the “frozen” parameter can be used to control the time-
dependent system in a range around the value of the
parameter as long as the change of b is not too fast.

(c) If the time-dependent parameter b cannot be frozen
in any way, one cannot obtain the matrix (16) and thus
the determination of the control coefficients is somewhat
difficult. A direct way is to search for effective con-
trol coefficients in the whole coefficient space. Numer-
ical calculations show that the method is applicable but
time wasteful if there are many coeflicients to be deter-
mined. Let us assume the underlying change of b is ran-
dom: b;y1 = b; + PBran(i) where ran(z) is a random func-
tion whose value is limited to (0,1) and B determines
the amplification of the random function. Our numeri-
cal calculations find that the control coeflicients in a re-

gion around (e1,€2,€3,€4,65) = (—2.1,—0.25,0.13,0,0)
can be used to control the time-dependent system when
choosing (19). Figure 3(a) shows the result using
(e1,€2,€3,€4,65) = (—2.1,-0.25,0.13,0,0) to implement
the control when 8 = 0.05. Similarly, we find that the
control coefficients in a region around (e1,e2,€3,€4) =
(—15.5,3,2,0) can be used to control the time-dependent
system when choosing the perturbation (20). Figure 3(b)
shows the result using (e1,¢€2,€3,€4) = (—15.5,3,2,0) to
implement the control when 3 = 0.001. In this example,

1.30

1.104

0.90

0 500 1000

0. 644

0 500
i

1000

FIG. 3. The numerical results of controlling the
time-dependent experimental system when the underlying
change of b is b(¢ + 1) = b(¢) + Bran(i). The initial value of b
is set at 0.3. (a) shows the result of tracking the fixed point
(z+,y+) by use of the control function (19) with 8 = 0.05 and
(b) shows the tracking result by use of the control function
(20), with 8 = 0.001. The trajectory of the perturbed system
is denoted by the discrete points (the initial values are set at
z =24 and y = y4 when b = 0.3 and @ = 1.29). The enlarged
segments from ¢ = 810 to ¢ = 815 are set at the upper-left
side in which those squares joined by the solid line are the
trajectories of the perturbed system. As a contrast, we plot
the corresponding location of z () by those squares linked
by the dashed line in the figures.
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the last control coeflicient of control functions (19) and
(20) can always be fixed at 0 because of the special qual-
ity of the Hénon map, i.e., the characteristic y; 11 = x;.

B. Controlling chaos by making use of delayed
information

In the case where prompt feedback is not accessible,
one must find ways to implement the control by use of
earlier information z;_; and p;_; as feedback information.
To obtain an efficient control function g using the method
of this paper, a direct way is to consider the following
system:

zip1 = £ (2, p; ), (22)
Pi+1 = 9(Bi—1,Pi—1),
where I denotes the delayed time and f() denotes the Ith
iterate of f. The function g that makes the fixed point of
(22) stable can be determined by the method of Sec. II.
Thus one can use the information of time 7 —[ as the
feedback information of time 7 + 1 to control the system.
However, the method is sensitive to noise when I > 1
because the perturbation is added to the system at every
lth iterate of f.

To illustrate the influence of noise, we add white noise
to the Hénon map: z;+; = 1 —az? +by; +6,; and y;1; =
x; + 0y;. First, we use prompt information z;4; and y;4+1
to control the fixed point (z4,y+). The control function
is

aiy1 = a0 +€1(Tiv1 — T4) +€2(Yir1 — Y1) (23)

Figure 4(a) shows the numerical result obtained by using
the “center” point of a = 1.29 and b = 0.3. In this
figure, the amplitude of the perturbations is limited to
0.2 and the amplitude of the noise is limited to 3.8 x 102,
One can see that control is achieved but there exist some
sporadic bursts. In fact, if the amplitude of the noise is
less than 3.8 x 1072, control is completely achieved. So
we think 3.8 x 1072 is the maximum amplitude of noise
that the perturbed system can resist. Second, we use the
state of the last time z; and y; (i.e., the case | = 0) to
control the same fixed point. The control function is

ait1 = ao +e1(z; —x4) +e2(y — Y4 ). (24)

Figure 4(b) shows that the maximum amplitude of noise
that the perturbed system can resist is 1.5 x 1072, In the
figure, all other data are the same as in Fig. 4(a). It shows
that the power to resist noise by use of information of the
last time as feedback and the power to resist noise by use
of prompt information as feedback are at the same level.
However, our numerical calculations show that if one uses
earlier (I > 1) information as feedback, the system is
much more sensitive to noise. For example, if Il = 1, the
maximum amplitude of noise that the perturbed system
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FIG. 4. Controlling chaos by making use of earlier states
as feedback information. (a) Using the prompt state z;41 and
yi+1 as feedback information, the amplitude of the perturba-
tions is limited to 0.2 and the amplitude of noise is limited
to 3.8 x 1072, (b) Using the earlier state z; and y; as feed-
back information, the maximum amplitude of noise that the
perturbed system can resist is 1.5 x 1072,

can resist is less than 1073, The reason is that in this
case the perturbations are added every [+ 1 iterates of f.

IV. CONCLUSION

The generalized method provides a mathematical
framework for describing allowable control functions. It
is actually an extension of the “pole placement tech-
nique.” The extension permits one to choose various
control functions instead of only the prompt feedbacks.
Among the allowable control functions, those not includ-
ing the coordinates of the control object provide a natural
way to go about tracking, especially when the change of
the parameters is involuntary. Another benefit is that
the method permits one to control chaos by using earlier
states of the system as feedback information in the case
where prompt feedback is inaccessible.

The method can be conveniently applied to an exper-
imental system. In the case that the experimental sys-
tem is time dependent, if the time-dependent parameters
can be “frozen” at some conditions, the determinationr
of the control coefficients is the same as in the time-
independent case; if “freezing” is impossible, the deter-
mination is somewhat difficult. Though a technique to
find the control coefficients is suggested in this paper, we
still hope more convenient methods will appear.

The control law for higher period orbits, say, a period-
N orbit, is principally implementable by considering the
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Nth iterate of the map. One may suspect that control
functions which do not include the coordinates of the
desired object may result in some confusion, i.e., how
can the control procedure distinguish different orbits with
the same period? In fact, the information of the desired
orbit is implicitly included in the control coefficients, so
once the control is turned on for the desired orbit in its
neighborhood tracking the “correct” orbit should not be
an issue. However, the sensitivity to noise when involved
at higher periods is also a problem. We will discuss the
problem elsewhere.

In addition, we would like to point out that the con-
trol functions which do not include the control object
in fact provide a way to find unstable periodic orbits of
experimental systems.
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